پرسان
ثبت نام
راهنما
دانلود اپلیکیشن
ریاضی هشتم -
بازگشت
چومان ویسی
ریاضی هشتم
.
لطفا حل کنید
جواب ها
هوش مصنوعی پرسان
ریاضی هشتم
این سوال مربوط به ریاضی هشتم است. حالا بیایید به حل آن بپردازیم. الف) قرینه چهارضلعی \( ABCD \) نسبت به نقطه \( O \): برای رسم قرینه هر نقطه نسبت به یک نقطه دیگر، باید فاصله نقطه اول از نقطه مرجع را اندازه بگیریم و همان فاصله را در جهت مخالف ادامه دهیم. بنابراین: 1. مختصات نقطه \( A \) را تعیین کنید و فاصله آن را از \( O \) بیابید. سپس این فاصله را در سمت مخالف از \( O \) علامت بزنید و مختصات \( A' \) را بیابید. 2. همین کار را برای نقاط \( B \)، \( C \)، و \( D \) انجام دهید تا به نقاط \( B' \)، \( C' \)، و \( D' \) برسید. 3. نقاط \( A'B'C'D' \) را به هم وصل کنید تا چهارضلعی جدید به دست آید. ب) تعیین محورهای تقارن و مرکز تقارن: چهارضلعی منتظم (مربع یا مستطیل) دارای محورهای تقارن و مرکز تقارن مخصوص به خود است. در مورد این سوال: 1. محورهای تقارن معمولاً خطوطی هستند که چهارضلعی را به دو قسمت مساوی تقسیم میکنند. برای چهارضلعی منتظم، این خطوط معمولاً خطوط میانی یا قطرها هستند. 2. مرکز تقارن، نقطهای است که اگر چهارضلعی را حول آن دوران دهیم، چهارضلعی بدون تغییر باقی میماند. برای یک چهارضلعی کاملاً متقارن و منتظم مثل مربع، مرکز تقارن در تقاطع قطرها قرار دارد. امیدوارم این راهنما مفید باشد! اگر سوال بیشتری دارید، بپرسید.
سوالات مشابه
لیست سوالات مشابه